Thermodynamic stability of domain III from the envelope protein of flaviviruses and its improvement by molecular design.
نویسندگان
چکیده
The Flavivirus genus includes widespread and severe human pathogens like the four serotypes of dengue virus (DENV1 to DENV4), yellow fever virus, Japanese encephalitis virus and West Nile virus. Domain III (ED3) of the viral envelope protein interacts with cell receptors and contains epitopes recognized by virus neutralizing antibodies. Its structural, antigenic and immunogenic properties have been thoroughly studied contrary to its physico-chemical properties. Here, the ED3 domains of the above pathogenic flaviviruses were produced in the periplasm of Escherichia coli. Their thermodynamic stabilities were measured and compared in experiments of unfolding equilibriums, induced with chemicals or heat and monitored through protein fluorescence. A designed ED3 domain, with the consensus sequence of DENV strains from all serotypes, was highly stable. The low stability of the ED3 domain from DENV3 was increased by three changes of residues in the protein core without affecting its reactivity towards DENV-infected human serums. Additional changes showed that the stability of ED3 varied with the DENV3 genotype. The T(m) of ED3 was higher than 69°C for all the tested viruses and reached 86°C for the consensus ED3. The latter, deprived of its disulfide bond by mutations, was predominantly unfolded at 20°C. These results will help better understand and design the properties of ED3 for its use as diagnostic, vaccine or therapeutic tools.
منابع مشابه
Dengue virus type-3 envelope protein domain III; expression and immunogenicity
Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different i...
متن کاملNeutralizing Antibody Response and Efficacy of Novel Recombinant Tetravalent Dengue DNA Vaccine Comprising Envelope Domain III in Mice
Background: Dengue is a global arboviral threat to humans; causing 390 million infections per year. The availability of safe and effective tetravalent dengue vaccine is a global requirement to prevent epidemics, morbidity, and mortality associated with it. Methods: Five experimental groups (6 mice per group) each of 5-week-old BALB/c mice were immunized with vaccine and placebo (empty plasmid) ...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2013